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Abstract 

The Advanced Baseline Imager (ABI) onboard the GOES-R series of geostationary 

satellites provides an opportunity to generate high-resolution satellite derived wind vectors over 

continental United States not possible from previous satellites. This study investigates the quality 

and the impact of assimilating satellite-derived winds (or Atmospheric Motion Vectors, AMVs) 

from the GOES-16 geostationary satellite on high-impact weather forecasts using the NOAA’s 

ensemble based Warn-on-Forecast System (WoFS). The WoFS runs at convection allowing scales 

(~3 km) with a 15-minute cycling frequency assimilating all available observations including 

conventional, radar and GOES-16 cloud water path retrievals over a limited area domain. Four 

severe weather events during 2018 are considered in this study to assess the potential impacts of 

assimilating GOES-16 AMVs into the WoFS. A total of eight experiments performed, four that 

assimilate AMV data and the remaining four do not with all including conventional, radar, and 

other satellite data. This research represents the first step to assimilated high-resolution satellite 

derived winds into the convective-allowing ensemble data assimilation system. The results show 

that the overall impact of assimilation of AMVs is small, but positive for probabilistic forecasts of 

reflectivity objects. 

Key words: GOES-R, Data Assimilation, Atmospheric Motion Vectors, Numerical Weather 

Prediction, Warn-on-Forecast. 
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1  1. Introduction  

Satellite-derived wind speed and direction from  cloud and moisture  objects  known as  

atmospheric  motion vectors  (AMVs) represent  an  approximation of the  local  wind at  the  height  of 

the  observed object  (Velden et  al. 1997).  AMVs  are  an  important  and valuable  data  source  for 

global  as  well  as  regional  numerical  weather prediction (NWP) models  and analyses. AMVs  

mitigate  critical  data  gaps  in regions  that  are  otherwise  observation poor. It  has  been well  

established  that  numerical  model  analyses  and forecasts  benefit  from  the  satellite-derived AMVs  

(Cardinali  2009;  Santek  2010;  Joo and Marriott  2013)  and  AMVs  are  routinely assimilated in all  

operational  global  NWP  systems (Rohn et  al. 2001;  Le  Marshall 2008a;   Cotton and Forsythe  2012;  

Mallick et  al. 2017).   In particular, several  studies  also showed that  assimilating  AMVs  improves  

the representation  of tropical  cyclone  wind structure  and its  surrounding environmental  flow  fields  

in global NWP systems (Langland et al. 2009; Berger et al. 2011, Sears and Velden 2012).    

While  AMV  datasets  are  adequate  and reliable  for global  data  assimilation systems, the  

coverage  and processing methodologies  are  not  optimized for smaller-scale phenomena. Regional  

data  assimilation and forecasting systems  are  trending toward nested grids  using  convection 

permitting and even convection resolving scales. High-impact  convective-scale  events  have  

important  mesoscale  flow  fields  that  need to be  resolved in order to improve  these  high-resolution 

analyses  and forecasts  (Stensrud et  al. 2009, 2013;  Madaus  et  al.  2014). The  time  has  come  to 

develop observation strategies  that  meet  these  increasing demands.  The  high-resolution AMV  

products  from  GOES-R have  the  potential  to provide  valuable  information for regional  NWP 

models, where  the  priority is  the  improved prediction of high impact  weather events.  These  data  

sets  are  being realized through  advancing satellite  sensors  and scanning strategies  and improving 

AMV retrieval  methodologies.   Several studies   found that  assimilating  high-resolution AMVs  can 
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1 benefit  regional  model  forecasts  of tropical  cyclone  track and intensity (e.g. Yamashita  2012, 

Velden et  al., 2017, Elsberry et  al. 2018,  Kim  and Kim  2018, Lim  et  al. 2019, Sawada  et  at. 2019). 

For example, Kim  and Kim  (2018) discuss  the  potential  benefits  and the  effect  of assimilating 

Himawari-8 AMVs  on forecast  errors  in East  Asia. For the  observation system  experiments, they 

used 3D-VAR data  assimilation technique  and the  regional  WRF  model. The  Japan Meteorological  

Agency (JMA) found that  the  assimilation of MTSAT  rapid scan AMVs  in their mesoscale  model  

with four-dimensional  variational  data  assimilation (4D-VAR) provided improvements  to typhoon 

forecasts in the western Pacific (Yamashita 2012).    

 Le  Marshall  et  al. (2008b) documented  the  impacts  of high-resolution AMVs  in the  

operational  Australian regional  model.  Otsuka  et  al. (2015, 2018)  and Kunii  et  al. (2016), 

conducted  experiments  assimilating rapid scan AMVs  from  Himawari-8 with a  mesoscale  regional  

model  and the  ensemble  based Kalman filter data  assimilation approach to forecast  heavy rainfall  

events. Their results  suggest  that  assimilating high resolution AMVs  slightly increased the  skill  of 

wind and precipitation forecasts. However, research into whether or not  assimilating AMVs  

improves forecasts of severe convection over land is much less   advanced (Yesubabu et al. 2016).  

The  new  GOES-R series  of satellites  include  the  Advanced Baseline  Imager (ABI) which 

generates  high resolution visible  and infrared imagery from  which additional  products  can be  

derived (Schmit  et  al. 2005, 2017). To develop the  high-quality Level-2 (L2) derived  products, the  

GOES-R algorithm  working group (AWG) was  formed (Daniels  et  al. 2008)  with one  key product  

being AMVs, also known as  Derived Wind Motion observations  (Velden et  al. 2017). The  

improved  performance  of image-to-image  navigation and registration due  to the  high spectral, 

temporal  and special  resolution of the  ABI  allows  retrieval  algorithms  to  extract  more  accurate  
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AMVs than previously possible (Velden et al. 2017). Previous studies (Wu et al. 2014, 2015) 

highlight the important contribution of high-resolution AMVs using GOES-R proxy datasets to 

mesoscale analyses. Their results suggest that high-resolution AMVs can improve model (WRF 

and HWRF) analyses and forecasts of TC intensity and structure. Recently, ECMWF documented 

their result on impact study with the GOES-16 AMVs using global assimilation experiments. The 

forecast impacts were generally neutral, but small reductions in the wind error at low levels and in 

the southern hemisphere were observed (Lean and Bormann 2019). Li et al. (2020) also show that 

the assimilation of the high-resolution AMVs from GOES-16 consistently improves the HWRF 

hurricane track and size forecasts, but have mixed impacts on intensity forecasts. 

The goal of this research is to assess the impact of assimilating AMVs derived from GOES-

16 ABI data into the Warn-on-Forecast System (WoFS) using four severe weather events from 

spring 2018. The initial quality of GOES-16 AMVs datasets is studied using different statistical 

methods including the number of observations available at each level and from each GOES-

16 channel from which AMVs are retrieved. The observation innovation statistics are computed 

against the model background for quality assessment and to quantify the changes to the mesoscale 

environment within the model. This research represents the first step to assimilated satellite winds 

into the convective-allowing ensemble data assimilation system over land. 

Following the Introduction, section 2 of this paper describes the satellite-derived wind 

products, the data assimilation and forecast system (WoFS), and the overall experiment design. 

Results of the impact of AMVs on the environment and reflectivity and updraft helicity (UH) 

forecasts are provided in section 3 with discussion and conclusions are present in section 4. 
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2. Data and Methods 

2.1. GOES-R AMVs 

Retrieval algorithms have been developed to estimate the direction and speed of identified 

cloud objects and/or moisture gradients in the atmosphere. In regional modeling applications, these 

retrievals can supplement radial velocity observations in radar coverage gaps and in non-

precipitating regions. In addition, these data can add upper-level wind information where sounding 

and aircraft data are not assimilated. In this research, AMVs retrieved from GOES-R ABI visible 

and infrared channels are used, which exists at higher spatial and temporal resolutions than those 

from the previous generation imagers. These data are designed to address the needs of forecasters 

who rely observations of rapidly evolving phenomena to issue forecasts of potential high impact 

weather events (Lindsey et al. 2018, Zhang et al. 2019). The pixel resolution of the GOES-R ABI 

data has approximately 2 km for the infrared (IR), short wavelength infrared (SWIR) and water 

vapor (WV) bands and 0.5 km for the 0.64 µm visible band. A total of six channels are used for 

GOES-R AMV cloud and water vapor tracking whereas only four channels were used on GOES-

13. Table 1 provides a summary of GOES-R ABI band number, wavelength, name and time 

interval used to derive AMVs. 

Tracking features are used to generate the AMVs include cloud objects and the moisture 

gradients from three sequential ABI images. Visible band (0.64 µm) data is generated during the 

day time only. Emissive or infrared (IR) band product data is generated both day and night except 

for the 3.9-μm band, where product data is generated during the night only. Many improvements 

have been made in the AMVs retrieval algorithm used with ABI data. The algorithm for the GOES-

N imager used long-established tracking and height assignment methods such as carbon dioxide 
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(CO2) slicing or the water vapor intercept method (Nieman et al. 1997) and employs an auto-editor 

that includes an adjustment of the heights through minimization of a penalty function combining 

the observations with model background (Velden et al. 1998, Forsythe and Saunders 2008). The 

new algorithm developed for ABI data uses new tracking and height assignment techniques. An 

optimal estimation technique is used for the height assignment. The cloud height algorithm, which 

also allows for multi-layer cloud solutions, is used to derive cloud parameters including the cloud 

top height using multiple channels (Bresky et al. 2012, Heidinger 2013). 

For target height assignment the GOES-R ABI channels 2, 7, 8 or 14 are used to track 

cloudy target scenes, pixel-level cloud-top pressures. The channels 8, 9, or 10 are used for 

targeting elevated moisture gradients (Daniels et al. 2012). The Sum of Squared difference (SSD, 

Euclidian distance), a correlation-based method is used to track cloud and clear-sky water vapor 

for the derivation of AMVs. To estimate the motion using cloud-top features, a tracking strategy 

called nested tracking is used. One of the uncertainties of the derived wind algorithm is the height 

assignment method. AMV retrievals rely on radiometric techniques for height assignment that 

have large uncertainties (Di Michele et al. 2013; Mueller et al. 2017). A study by Salonen et al. 

(2015) showed that the comparison of AMVs assigned heights with model analyses demonstrates 

AMVs model height differences that are consistent with the lidar results. Lean and Bormann 

(2019) conducted an experiment to estimate GOES-16 AMVs height assignment error 

contribution. Their results showed that height assignment error was around 70-90 hPa in the lowest 

level (800-1000 hPa), 120-170 hPa in the next level (600-800 hPa) and for high level, the error 

was around 40-60 hPa. This result suggests that the height error is near double in the 600-800 hPa 

level compared to lower and the upper levels. The comparison of AMVs heights 

with radiosonde profiles suggests that height assignment errors represent 70% of the overall 
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uncertainty (Velden and Bedka 2009). Characterization and reduction of height assignment error 

continue to be aggressively investigated by the NWP community. The AMV community, in 

collaboration with cloud groups, are also actively trying to characterize the height assignment 

error. Full details of the GOES-R AMV retrieval algorithms can be found in the “GOES-R 

Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Derived Motion 

Winds” (Daniels et al. 2012; Heidinger 2013). 

2.2. Initial Assessments of GOES-R AMV data and Quality Control 

The GOES-R retrieved wind product file consists of wind vectors containing wind speed, 

location, wind direction, pressure height, brightness temperature and the corresponding quality 

control flags (QCF). In this study, AMVs data from GOES-East (16) are used. The raw L2 

“DMWM1” files from NOAA/ NESDIS are downloaded from (https://thredds-

test.unidata.ucar.edu/thredds/catalog/satellite/goes/east/Products/DerivedMotionWinds/catalog.ht 

ml) in NetCDF file format. These data are available in realtime with a latency of only a few minutes 

making them very suitable for the WoFS or similar systems. Operational models generally use a 

post-processed and quality-controlled form of AMV data included in “prepbufr” files. However, 

these files only contain data at a much lower spatial and temporal resolution, making them 

inadequate for our purposes. 

To determine which raw observations are suitable for assimilation, various quality control 

checks must be applied. All L2 AMV retrievals are assigned a unique quality control code (QCF) 

from 0-22. Figure 1 shows the percentage of AMVs observations with five different QCF for a 

typical time from 1800 UTC (mid-afternoon) to 0300 UTC (early evening) and for the four cases 

considered in this study. QCF-0 indicate the good data which account for less than 10% of all 
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potential retrievals. The remaining QCF data are associated with a unique flag value from the 

number QCF-1 to QCF-22, which filtered out prior to the observation processing step used in this 

research. QCF-1 represents the data those are not pass QC because of the maximum gradient below 

acceptable threshold and QCF-3 failure because of cloud amount failure which occurs if the cloud 

cover is less than 10% for the cloud track winds or more than 0% cloud cover for water vapor 

clear-sky winds. QCF-4 is for median pressure failure, and the QCF-14 occurs when the median 

pressure used for the height assignment outside acceptable pressure range. For all the four cases, 

more than 60% of the potential retrievals are unused for the reason of cloud amount fail (QCF-3) 

or a non-valid the height assignment (QCF-14) (Fig. 1). Selection of only “good” retrievals 

represents the first QC step (QCS-1) of this research. For real-time AMV data processing all good 

quality retrievals within a -10 to +5-minute window from a particular analysis time are extracted 

from the raw L2 product files. At this stage, the wind speed (ws) and wind direction (wd) values 

are converted to the zonal and meridional velocity (u, v) components using the formula u = ws*cos 

(900 + wd); v = -ws*sin (900 + wd) for all retrievals which pass these steps. 

In addition to the quality control checks built into the retrieval software, other quality 

control products exist. For example, a quality indicator (QI) is an intermediate product that defines 

the quality of good retrievals through comparisons with co-located radiosonde observations (e.g. 

Holmlund 1997; 1998). This product is used for quality control in the prepbufr files used in 

operational models, but was not available for this research. Many additional quality control 

methods used by various data assimilation centers are described in Santek et al. (2018). The 

authors’ are aware that additional quality indictors will be required to fully optimize AMV 

assimilation into the WoFS. 

9 
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The second stage of QC (QCS-2) is applied within the Grid-point Statistical Interpolation 

(GSI) software for all retrievals that pass QCS-1. First, GSI performs an outlier check. The 

innovation (observation – background) is calculated from the interpolated model background 

fields to the observed location. In case of AMV observations, the threshold value between the ratio 

of the innovation to the observation error is set to 5 by default. If the ratio is greater than 5 then 

AMVs data are not used. The other QCS-2 criteria are: 

• Tropopause check for all wind data. Those with a pressure height less than 100 hPa 

• Near Surface check. Those data having a pressure height greater than 950 hPa. 

• No visible wind has been used with a pressure height above 700 hPa. 

• No winds from the infrared longwave window having a pressure height in between 400-

800 hPa. 

• No upper level water vapor wind retrievals having a pressure height lower than 400 hPa. 

• No AMV retrieval used having a direction departure greater than 50 degrees from the 

model analysis. 

• No AMV retrieval used having a magnitude of wind speed outside the range 3-150 m s -1. 

Applying these quality control criteria (QCS-1 and QCS-2) results in approximately 75% of 

the potential infrared and 25% of the potential visible observations being filtered out and not 

assimilated into the system. The observation error for AMVs is calculated using suitable 

combinations the tracking error and the error in the speed (Bormann et al. 2003; Salonen and 

Bormann, 2013). It has been observed that for the IR bands from geostationary orbiting 

s-1 instruments, values ranging between 2.0 and 3.0 m are appropriate estimates 

10 



   
 

1  (https://nwpsaf.eu/monitoring/amv/amvusage/mfmodel.html). As  a  result, the  AMVs  observation 

2  error was set to 2.0  m s-1  for the infrared bands and 1.5 m s   -1  for the visible band.     

3   

4  2.3. Model configuration   

5  The  NOAA’s  ensemble  based Warn-on-Forecast  (WoF)  project  has  developed a  rapid-

6  cycling, data  assimilation and forecasting system  to improve  short-term  (0-3 h)  forecasts  of  high 

7  impact  weather events  (Stensrud et  al. 2009;  2013).  Since  the  beginning of the  WoF  project  in 

8  2009, continuous  research and development  in storm-scale  data  assimilation techniques  has  

9  resulted in the  creation of the  NSSL’s  Warn-on-Forecast  System  (WoFS) (Wheatley et  al.  2015;  

10  Jones  et  al. 2016;  Skinner et  al. 2016;  Jones  et  al. 2018;  Skinner et  al. 2018;  Gallo et  al. 2018). The  

11  WoFS  is  a  sub-hourly cycling, regional  domain  convective-scale ensemble  data  assimilation and 

12  forecast  system  that  generates  high impact  weather forecasts  including tornadoes, large  hail, heavy 

13  rainfall, and landfalling tropical  cyclones  (Skinner et  al. 2018;  Yussouf and Knopfmeier 2019; 

14  Jones  et  al. 2019).  Currently,  the  WoFS  uses  the  Advanced Research version of the  Weather 

15  Research and Forecasting Model  (WRF-ARW) model  core  (Skamarock et  al. 2008) coupled with 

16  the  Grid-point  Statistical  Interpolation (GSI) package  that  includes  an Ensemble  Kalman Filter 

17  (EnKF) data  assimilation system  (Whitaker and Hamill  2002;  Whitaker et  al. 2008; DTC 2017, Liu  

18  et al. 2017).    

19  The  WoFS  configuration used for these  experiments  similar to the  one  used for Hazardous  

20  Weather Testbed (HWT) operational  testing beginning in 2017 and continuing through 2020. This  

21  version of the  WoFS  uses  a  3-km  horizontal  grid spacing with 51 vertical  levels  and a  model  top 

22  at  20 hPa. The  initial  and boundary conditions  are  provided by  an experimental  36-member High-
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Resolution Rapid Refresh ensemble (HRRRe) (Benjamin et al. 2016; Alexander et al. 2018). The 

WoFS domain for these experiments is 250 x 250 grid points and is centered on the area of 

expected severe weather for each day. Ensemble spread is maintained by using a different set of 

planetary boundary layer and the radiation schemes for each ensemble member (Wheatley et al. 

2015). In addition, all 36 members use the NSSL double moment cloud microphysics scheme 

(Mansell et al. 2010). GSI applies the QCF2 quality control step and calculates the ensemble priors 

to be used by the EnKF assimilation module. In the WoFS, separate sets of conventional 

observations, radar data, and satellite data are assimilated at 15-min intervals starting at 1800 UTC 

each day and ending at 0300 UTC the following day. See Jones et al. (2018) and Hu et al. (2019) 

for further information on the current WoFS configuration. 

Assimilation of conventional, radar, and satellite observations provides the initial conditions 

of the convective features and the near-storm environment within the model analysis (Jones et al. 

2015; Jones et al. 2018). In this research, the conventional data used include surface temperature, 

humidity, pressure and wind measurements from available Automated Surface Observing System 

(ASOS) sites and the Oklahoma Mesonet sites. Both radar reflectivity and radial velocity are 

assimilated into the WoFS and are derived from WSR-88D radar sites located within and near the 

experiment domain. WSR-88D reflectivity contained within the 1-km Multi-Radar Multi-Sensor 

(MRMS) product are objectively analyzed to a 5-km resolution from which observations to 

assimilate are drawn from (Smith et al. 2016). In case of clear-air reflectivity, the resolution is 

thinned to 10 km. The vertical height of the reflectivity observations used in the assimilation 

system ranges from 0.5 km to 10 km above ground level. Radial velocity is processed directly 

from level 2 WSR-88D data and also objectively analyzed to a 5-km resolution using the Cressman 

scheme. Satellite data in the form of cloud water path (CWP) retrievals from GOES-16 are 

12 
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assimilated during day time only (Jones et al. 2016). The GOES-16 CWP derived products 

represents the amount of cloud water and cloud ice present in an integrated column along with 

cloud height information (Minnis et al. 2011). CWP observations are generated using the Satellite 

ClOud and Radiation Property retrieval System (SatCORPS) developed by the NASA Langley 

research center and processed experimentally from GOES-16 data in real-time for WoF 

applications (Minnis et al. 2011, Jones et al. 2016). Both radar and CWP observations are 

generated at 15 minute intervals. 

To limit the observation impact in the horizontal and the vertical direction, the covariance 

localization is used when updating the model state. The covariance localization information is used 

by the GSI-EnKF system for observation types assimilated including all conventional, radar and 

satellite CWP are similar to those used by Jones et al. (2018). For AMVs, they are set to 100 km 

for the horizontal and 0.8 scale height for the vertical localization (Table 2). The same localization 

values are used for both u and v wind components. An outlier threshold of 3.25 standard deviations 

from the mean is applied to all observation types within the EnKF code and those that fall outside 

this threshold are not assimilated to match the configuration used by the WoFS. To analyze the 

impact of GOES-16 AMV in the convective-scale ensemble data assimilation and forecasts, two 

sets of experiments are conducted for each case. One that assimilates AMV data (with AMV; 

WAMV) and one without AMV data (Control run; CNTL) with both assimilating all conventional, 

radar, and CWP observations. 

2.4. Overviews of the selected cases 

Four high impact weather events during the spring of 2018 are considered by this study to 

assess the potential impacts of assimilating GOES-16 AMVs into the WoFS. Each case contains a 

13 
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unique environment with different storm modes, but all generate numerous severe weather 

warnings and corresponding reports. The Storm Prediction Center (SPC) tornado, hail, and severe 

wind reports and the MRMS composite reflectivity within the domain of each event are provided 

in Figure 2 and Table 3. 

On 2 May 2018, a slow-moving cold front initiated severe storms across Kansas (KS) and 

Oklahoma (OK) during the late afternoon and the evening producing significant wind damage 

across the region (Fig. 2a, Table 3). The environment ahead of the front was very unstable with 

adequate vertical wind shear for the development of isolated supercells. Several developed in 

southern OK and northern TX with the OK storm generating a few tornado reports (Fig. 2b). 

Convection in KS was more linear in nature, but still generated several tornados after 2300 UTC. 

On 14 May, several areas of severe convection developed in TX, OK, and KS. The 

primary severe weather threats were hail and wind, but an isolated supercell did form in extreme 

southern KS that produced several tornadoes (Fig. 2c,d). Early afternoon convection across eastern 

CO and western KS produced a track of severe hail reports and generated outflow boundaries on 

which later KS convection initiated as it progressed eastward.  

During the afternoon of 29 May 2018, a weakly capped and unstable airmass was present 

from central KS southward into western OK. By 2300 UTC, widespread severe convection had 

developed within the domain with several supercells presented from TX northward into KS (Fig. 

2f). Long tracks of severe hail reports with a few tornadoes were produced by these supercells as 

they moved eastward (Fig. 2e). 

During the late afternoon on 1 June 2018, a cold front was present in central Nebraska (NE) 

with a corridor of low-level moisture extending northward from NE into southeast South Dakota 

(SD). A severe linear mesoscale convective system (MCS) formed by 2300 UTC (Fig. 2h). This 
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MCS was moved to southeastward into southeast SD and northern NE producing multiple severe 

weather reports including 3 tornados and becoming primarily a severe wind threat as it moved into 

eastern NE (Fig. 2g, Table 3). 

3. Results 

3.1. AMVs Observation Statistics 

In this section, the observation-space diagnostics including the number of observations 

assimilated and the observation innovation statistics for each assimilation cycle starting from 1800 

UTC and ending at 0300 UTC the following day are calculated to assess the performance of the 

WoFS during the 9 hour continuous data assimilation period for each case. The spatial distribution 

of assimilated GOES-16 AMVs at 1800 UTC for the four cases examined in this study are shown 

over the model domain for each case (Fig. 3). The number of observations in three different range 

of pressure levels are the lower level (1000-700 hPa), middle level (700-400 hPa) and the upper 

level (400-100 hPa) are shown. It should be noted that the pressure levels of all the visible AMVs 

lie between 1000 to 700 hPa. A few AMVs from IR longwave window band (channel-14) are also 

retrieved within this layer (Fig. 4). The majority of IR winds are retrieved above 400 hPA and 

represent upper-level cirrus cloud movements. There are only a few (or no AMVs) assimilated in 

the mid-troposphere (700 – 400 hPa) due to much fewer water-vapor channel retrievals being 

present for these cases. 

Figure 5 shows the percentage of AMVs assimilated at each 15-min assimilation cycle 

during the complete data assimilation period. The percentage is calculated between the total 

number of good AMVs (QCF-0) before the two stage of QC (QCS-1 and QCS-2) and the number 

of assimilated AMVs into WoFS within the study domain. The assimilated AMVs time series plots 
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show the variation of the observations from VIS and IR channels. During the daytime hours, high 

resolution VIS AMVs are available for most data assimilation cycles for each case while WV and 

IR retrievals are more sparse, but are present for the entire cycling period. 

On 2 May, 68% of potential AMV retrievals (out of total 14059) are assimilated, with the 

majority of those from the IR channels (Fig. 5a; Table 4). It is interesting to note that all IR 

observations are from 400-100 hPa level, no AMVs are assimilated in-between 700-400 hPa level. 

This may due to the fact that maximum number of AMVs are from IR longwave window (channel-

14) and this AMVs having pressure in-between 400-800 hPa are fail GSI QC at QCS-2. For 14 

May and 29 May, the number of available AMVs is much higher (almost double) compared to the 

number of AMVs on 2 May (Fig. 5b,c). Also, the vast majority of assimilated retrievals for the 14 

29 May and 1 June cases are from the visible channel and not the IR channels. This is due to more 

extensive low-level cloud cover over the domains (not shown). Note that the number of visible 

retrievals decreases to zero between 0000 – 0100 UTC as darkness falls on each domain. 

The quantitative and qualitative knowledge of observation innovation calculated from 

observation value minus background (O-B) is very important to determine the quality of the data 

assimilation system. The AMV observation innovation (O-B) is used in quality control, as well as 

the forecast implications. In each 15-minute assimilation cycle, AMV observation innovations are 

used to adjust the model fields to produce a more accurate and dynamically consistent analysis for 

a new forecast cycle. The total ensemble mean innovation of the eastward wind component (u-

wind in m s-1) is calculated from 1800 to 0300 UTC for each case (Fig. 6). The u-wind error 

variation at each assimilation cycle of the mean O-B lies between −2 and 2 m s-1 and the mean O-

A lies between -1 and 1 m s-1 with the errors almost randomly distributed. The negative value 
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indicate that the model background has a larger easterly wind component compared to GOES-16 

AMVs observations. Results from the v-wind component are generally similar (not shown). 

3.2. Wind analyses. 

The observation diagnostics above indicate that the majority of wind speed increments are 

relatively small (< 2 m s-1); however, there are some areas where the increments are much larger 

resulting in significant differences between the CNTL and WAMV experiments. To assess where 

these differences are largest, difference fields (WAMV – CNTL) of the ensemble mean wind speed 

at 4 different levels (500, 700, 850 hPa, and 500 m AGL) are computed at 2100 UTC for each 

case. On 2 May, the greatest difference in the environmental wind field occurs in eastern OK and 

southern KS at the 700 hPa level where WAMV increases wind speed more than 5 m s-1 (Fig. 7b). 

This region corresponds to an area where large numbers of visible channel AMV retrievals in OK 

and infrared retrievals in KS are assimilated (Fig. 3a). Environmental differences at other levels 

are generally small. Nearby ongoing convection, differences on the order of ±5 m s-1 are often 

apparent at all levels, but consistent patterns are difficult to discern. An exception occurs with the 

850 hPa and 500 m wind speed differences associated with the western OK storms (Fig. 7c,d). 

Here, low-level wind speeds are generally greater in the WAMV experiment indicating the 

existence of more robust convection at this analysis time. 

For the 14 May case, several differences between each experiment are also apparent. In the 

non-convective environment in OK, WAMV decreases windspeeds at 700 hPa and below in 

several areas by approximately 1-2 m s-1 (Fig. 8b-d.) Additionally, WAMV increases windspeed 

in the northwestern portion of the domain at 850 hPa and below while also increasing windspeed 

along the boundary in southern KS (Fig. 8c,d). This is due to a boundary being analyzed somewhat 
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further north in WAMV compared to CNTL, which could have implications for convective 

initiation.  

Several areas of windspeed differences also exist in the 29 May experiments. As before, 

differences at 500 hPa not associated with ongoing convection are small (Fig. 9a). However, much 

larger differences exist lower in the atmosphere. At 700 hPa and below, windspeed in western 

Oklahoma is 1-2 m s-1 lower in WAMV compared to CNTL (Fig, 9b-d). At 700 hPa, windspeed 

is increased more than 5 m s-1 over areas of western KS, indicating that WAMV analyzes stronger 

southwesterly flow in this region (Fig. 9c). Interestingly, WAMV decreases windspeed in the same 

area at 850 hPa and 500 m. WAMV also increases windspeed in northern TX corresponding to a 

convergence area associated with a deepening surface low and increases windspeeds associated 

with convection in north-central KS and southern NE (Fig. 9c,d). 

Finally for the 1 June case, several areas where WAMV differs from CNTL are apparent. 

First, assimilating AMVs increases southerly windspeed at 700 hPa in central SD associated with 

developing convection (Fig. 10b). However, WAMV generates weaker winds below 700 hPa in 

western NE associated with a slightly slower eastward propagation of a dryline feature (Fig. 10b-

d.) This decrease results in less dry air being advected into north-central NE where severe 

convection is developing. Overall, large scale impacts on the dynamical environment are relatively 

small, but there do exist regions where significant differences do exist especially at 700 hPa and 

below. These differences are often associated with boundaries, moisture transport, and convective 

characteristics, which will impact how high impact weather is forecast by this system. 

3.3. Impact of AMVs on reflectivity forecasts. 

18 



   
 

 
 

 Changes  to the  analyzed wind fields  at  various  levels  from  assimilating AMVs  impact  the  

evolution of forecast  convection in each experiment. These  differences  can be  assessed by 

comparing forecast  simulated radar reflectivity against  observed reflectivity from  the  WSR-88D  

network. Forecasts  initialized at  2100 UTC on 2 May show  that  both experiments  accurately 

generate  0-90 minute  forecasts  of the  eastward moving convection in southern KS  (Fig. 11). 

Similarly, they both correctly forecast  more  isolated convection in OK  while  also having difficulty 

with the  convection in far southwestern OK  and north TX.  However, more  members  from  WAMV  

generate  convection in this  region by 2230 UTC compared to CNTL  (Fig. 11e,f). This  difference  

corresponds  to the  stronger windspeeds  associated with the  analyzed convection at  the  beginning 

of this forecast period at 2100 UTC (Fig. 7d.)   

 For forecasts  initialized at  2100 UTC on 14 May, relatively few  differences  exist  between 

CNTL  and WAMV  (Fig. 12). Both experiments  have  difficulty in correctly forecasting the  

evolution of the  convective  cells  in KS  while  failing to forecast  severe  convection located on the  

KS  –  OK  border  despite  the  differences  seen  in the  wind fields  analyzed at  the  beginning of this  

forecast  period.   Larger differences  between CNTL  and WAMV  are  apparent  for the  29 May case.  

At  2130 UTC, a  severe  storm  is  located along the  KS-OK  border moving northeastward that  CNTL  

fails  to forecast  (Fig. 13a). This  storm  is  depicted in WAMV  and persists  in that  experiment  out  to 

2230 UTC (Fig. 13f). Further north, neither experiment  accurately depicts  convection in central  

KS  by 2130 UTC, but  WAMV  does  begin to forecast  convection in this  area  by 2200 UTC. This  

convection becomes  well  established in WAMV  by 2230 UTC while  still  struggling to form  in 

CNTL  at  this  time  (Fig. 13e,f). These  differences  are  likely related to  the  slowdown in southerly 

winds  in WAMV  in western OK, though the  exact  physical  relationship between this  and its  

influence on the convection is unclear for this example.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

19 



   
 

 Finally, significant  differences  between both experiments  are  also apparent  for the  1 June  

case. At  2100 UTC, a  complex of severe  convection is  moving eastward along the  SD  –  NE  border 

and intensifying. Forecasts  initiated at  this  time  from  both experiments  depict  this  convection and 

propagate  it  eastward, somewhat  too quickly compared to observations. The  key difference  

between CNTL  and WAMV  is  that  only the  latter correctly forecasts  the  southern extent  of the  

convection by 2230 UTC (Fig. 14e,f). WAMV  also generates  fewer false  alarms  further  north 

compared to CNTL.  Recall  that  southwesterly wind speed is  decreased in WAMV, resulting in 

less  dry air being advected into the  pre-storm  environment  above  the  boundary layer. Thus, 

WAMV  generates  a  more  favorable  environment  for the  development  and persistence  of 

convection which is indeed the result forecast.  

 Qualitatively, forecasts  of convection are  improved by assimilating AMVs  in three  out  of 

the  four examples  shown. However, this  assessment  only represents  a  single  forecast  period for a  

particular case  and more  quantitative  metrics  are  needed to fully assess  the  impact  of assimilating 

AMVs.  

3.4. Quantitative verification  

The  overall  performance  of AMV  assimilation in the  WoFS  is  assessed using an object-

based verification method (Davis  et  al. 2006;  Skinner et  al. 2016;  2018)  for all  four cases. Model  

simulated ensemble  mean composite  reflectivity and 2-5  km  Updraft  Helicity  (UH;  Kain et  al  

2008) fields  are  compared to MRMS  reflectivity and rotation objects  (Newman et  al. 2013) at each 

available  forecast  time  step.  A  summary of total  number of reflectivity and rotation  objects  

accumulated for both WAMV  and CNTL  experiments  and for each individual  case  is  shown in 
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1 Table 5. The largest number of reflectivity and rotation objects are generated by the 14 and 29 

2 May cases as they are associated with more widespread convection. 

3 Performance diagrams (e.g. Roebber 2009) summarize the impact of AMVs for reflectivity 

4 (Fig. 15) and 2-5 km UH (Fig. 16) forecasts at 60-min, 90-min and 120-min forecasts times. These 

5 statistics are computed using all forecasts initiated from 1900 to 0300 UTC for each event. In the 

6 case of reflectivity, overall 60 to 120 minute forecast skill is similar for all experiments indicating 

7 that the differences observed in the examples shown above get washed out from the large number 

8 of objects where skill is unchanged between both experiments (Fig. 15). Slight forecast 

9 improvement is observed for 90 and 120 minute forecasts of the 14 May and 1 June events, while 

10 the impact of assimilating AMVs on the other two events is neutral (Fig. 15e-f, k-l). Differences 

11 are larger for 2-5 km UH verification, but not always in favor of WAMV. With the exception of 

12 60 minute forecasts from the 1 June event, WAMV generates similar or slightly worse skill than 

13 the CNTL experiment. The largest difference occurs for the 14 May event, where WAMV 

14 consistently performed worse after 90 minutes (Fig. 16e). Interestingly, WAMV generates higher 

15 reflectivity skill for this case at the same times (Fig. 15e). Overall, most of the differences in skill 

16 are quite small and their statistical significance is marginal at best. Thus, while assimilating GOES-

17 16 AMVs has the ability to substantially impact individual forecasts, the overall impact when 

18 analyzing all forecasts is neutral to positive for reflectivity and neutral to negative for 2-5 km UH. 

19 The different results for reflectivity and UH verification also highlight the difficulty in determining 

20 which set of experiments is truly the best. 

21 

22 4. Discussion and Conclusions 
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First part of this study investigates the quality of GOES-16 AMVs and the number of 

observations from different channels available for assimilation. The initial assessment showed that 

more than 60% of data are failed attempts at AMVs for the reason of cloud amount fail and height 

assignment. During the daytime the maximum number of observations are from VIS channels and 

only a few upper level AMVs are from IR channels. The results suggest that attention should be 

given to the quality as well as the quantities of the AMVs observation before assimilation into the 

high-resolution models. 

The second part of this study investigated the direct impact of assimilating satellite-derived 

wind GOES-16 AMVs using the NOAA’s WoFS on the high-impact weather forecasts. The results 

show the differences in the wind fields are generally confined to 700 hPa and below due to the 

limited number of upper-level AMVs assimilated. However, visible channel retrievals often 

modified the model wind-fields both in the large-scale environment and nearby developing 

convection. These differences led to differences in storm structure, moisture transport, and 

boundary location that impacted the forecasts of convection by the WoFS. Although the results 

suggest that the influence of GOES-16 AMVs on high-impact weather forecasts are neutral to 

positive in the case of reflectivity and neutral to negative in the case of 2-5 km UH, they seem to 

be case dependent. Our study is limited to 4 convective events during the May-June 2018, ongoing 

work on assessing the impact of assimilating AMVs is underway for spring 2019 and 2020 events. 

It is also important to identify the seasonal variation of the impact of AMVs including multiple 

assimilation system. The impacts of AMVs observations can vary depending on cloud interaction, 

observation time, observation errors and land surface properties. Although studies have shown that 

AMVs can increase skill in NWP, the issues related to quality control and height assignment 

remain. A good specification of the AMVs observation error information that is crucial for data 
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assimilation has made difficult due to its complex natures. More study is needed to address these 

series of issues. Other future research could be similar to the impact study of high-resolution 

AMVs from GOES-R for hurricanes forecasts (Velden et al. 2017, Li et al. 2020). With high-

resolution GOES-R AMVs data research work can extend to see the model impact for storm-scale 

structure changes and identification sever storm. This research represents the first step to 

assimilated GOES-16 AMVs into the high-resolution limited area model and the results of this 

study provide guidance for the use of GOES-16 AMVs into the convective-allowing ensemble 

data assimilation system. Despite the sometimes-mixed impacts, there are good lessons to be 

learned from this investigation. To maximize the effect of assimilating GOES-16 AMVs on the 

high-resolution limited model forecasts, additional studies are needed using various assimilation 

and forecast systems 
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(Channel 

No.) 

Approx. 

Central 

Wavelength 

(µm) 

Wavelength 

Range (µm) 

Image 

Time 

Interval 

(mins) 

Pixel 

resolution 

(km) 

Band 

Type 

Band Nickname 

2 0.64 0.59-0.69 5 0.5 Visible Red 

7 3.9 3.80-4.00 5 2 Infrared Shortwave Window 

8 6.2 5.77-6.6 5 2 Infrared Upper-Level Tropospheric 

Water Vapor 

9 6.9 6.75-7.15 5 2 Infrared Mid-Level Tropospheric 

Water Vapor 

10 7.3 7.24-7.44 5 2 Infrared Lower-level Water Vapor 

14 11.2 10.8-11.6 5 2 Infrared Longwave Window 

4 
5 Table 1. Summary of GOES-16 ABI band number, wavelength, name and time interval used to 

6 derive AMVs. 

7 

8 

9 

10 

11 

12 

38 



   
 

 
 

  

  

  
  

 
 

 

 

 

 

 

 

     

     

    

    

    

 
    

     

 

 

 
     

   
   

   

   
   

   

  

1 

2 

3 
4 

Observation 

Type 
Variables 

Horizontal 

localizatio 

n (km) 

Vertical 

Localizatio 

n 

[ln(p/pref)] 

Observation Error 

Eastward (u-) wind 60 0.85 1.75 m s -1 

Northward (v-) wind 60 0.85 1.75 m s -1 

Mesonet Temperature (T) 60 0.85 1.75 K 

Dewpoint (Td) 60 0.85 2.0 K 

Pressure (Ps) 60 0.85 1.5 hPa 

Radar 
Reflectivity (dBZ) 18 0.80 5.0 dBZ 

Radial velocity (RW) 18 0.80 3.0 m s -1 

Cloud water path 

(CWP) 
36 1.05 0.025 - 0.15 kg m -2 

Satellite 

(GOES-16) 
AMVs (u-wind) 100 0.80 

1.5 m s -1 for VIS 

2.0 m s -1 for IR 

AMVs (v-wind) 100 0.80 
1.5 m s -1 for VIS 

2.0 m s -1 for IR 
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Table 2. List of the observation type, horizontal and vertical covariance localization length scale 

and the observations error used by the WoFS system. Errors are similar to those used by Jones et 

al. (2018). 

5 

Event Tornadoes Hail Wind 

2 May, 2018 16 44 97 

14 May, 2018 4 98 46 

29 May, 2018 6 112 47 

1 June, 2018 3 31 46 

6 Table 3. Total number of tornado, severe hail (diameter > 1.0 in.), and severe-wind (wind speed 

7 > = 58 mph ) reports within the model domain for each case consider in this study. The total 

8 number is counted over the study domain between the time 1800 and 0500 UTC the following 

9 day. 

10 

11 

12 

13 

Event 

Total 

Number of 

AMVs 

(Before QC) 

Percentage (%) of AMVs used in DA. 

ALL VIS Band IR Band 

2 May, 2018 14059 68 28 40 

14 May, 2018 22723 78 67 11 

29 May, 2018 22645 72 55 17 
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1 June, 2018 6867 86 77 8 

Average 16574 76 57 19 

1 Table 4. Summary of the total number of good retrievals used before and after assimilation over 

2 the study domain. 

3 
4 
5 
6 

7 
Event dBZ Rotation 

CNTL WAMV CNTL WAMV 

2 May, 2018 77741 81599 33335 33759 

14 May, 2018 120896 120280 49388 44771 

29 May, 2018 124263 129505 46230 41893 

1 June, 2018 74778 74792 30871 30085 

Total 397678 406176 159824 150508 

8 Table 5. Summary of total number of reflectivity and rotation objects accumulated over all the 

9 ensemble member and 180-min forecasts times for both CNTL and WAMV experiments and for 

10 all the four cases over the study domain. 

11 

12 

13 

14 

15 

16 

17 

18 
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1 Figure 1: Percentage of AMVs available with five different quality control flag (QCF) from 1800 
2 UTC to next day 0300 UTC. Each panel represent the convective cases considered in this study. 
3 

4 
5 Figure 2: Location of tornado (triangle), hail (circle) and wind (triangle) reports over the model 
6 domain for each case and the Multi-Radar/Multi-Sensor System (MRMS) composite reflectivity 
7 (dBZ) for each case at a selected analysis time. 
8 
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Figure 3: Spatial distribution of 1800 UTC assimilated AMVs within the study domain of each 
case. The numbers on the top of each panel represent total number of observations assimilated at 
1800 UTC and the corresponding number of observations counted in each three different level 
starting from lower level (LL) from 1000-700 hPa; the middle level (ML) from 700-400 hPa and 
the Upper level (UL) from 400-100 hPa. 
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Figure 4: Scatterplot of assimilated AMVs in terms of wind speed (x-axis) at different pressure 
level (y-axis) from Visible and IR channels from 1800 UTC to next day 0300 UTC for each case. 
The green circles are from VIS and blue circle from IR channel. 
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Figure 5: Percentage of observations assimilated in the WoFS at 15 min assimilation cycle from 
1800 UTC to next day 0300 UTC for each event. The solid black line represents the percentage of 
AMVs assimilated including all VIS and IR channel, whereas the blue line is only for the VIS and 
the green line for IR channels. The percentage of observations is calculated between the total 
number of good AMVs before the two stage of QC in observation processing (QCS-1) and data 
assimilation step (QCS-2) with the number of the assimilated observations. 
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Figure 6: Ensemble mean u-wind observation innovations at 15 min assimilation cycle from 1800 
UTC to next day 0300 UTC for each case. The solid black line represents the innovation of AMVs 
assimilated including all VIS (blue line) and IR (green line) channel. 
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Figure 7. Analyzed ensemble mean wind speed difference (in m s-1) between WAMV and CNTL
at four different levels (500, 700, 850 hPa and 500 AGL) at 2100 UTC 2 May 2018. Wind barbs 
represent WAMV wind speed and direction at this time. 
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1 
2 Figure 8. Same as Figure 7, but for 2100 UTC 14 May. 
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1 
2 Figure 9. Same as Figure 7, but for 2100 UTC 29 May. 
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1 
2 Figure 10. Same as Figure 7, but for 2100 UTC 1 June. 
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 Figure  11. Forecast  composite  reflectivity > 45 dBZ  from  CNTL  and WAMV  initiated at  2100 
 UTC. Darker grays  indicate  more  members  generate  convection at  a  particular location. 
 Background plot shows observed   WSR-88D composite reflectivity valid at the forecast time.   
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1 
2 Figure 12. Same as Figure 11, but for forecasts initiated at 2100 UTC 14 May. 
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1 
2 Figure 13. Same as Figure 11, but for forecasts initiated at 2100 UTC 29 May. 
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Figure 14. Same as Figure 11, but for forecasts initiated at 2100 UTC 1 June. 
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Figure 15. Performance diagram at (left) 60-min, (center) 90-min and (right) 120-min forecast 
time for composite reflectivity (dBZ) forecasts for 4 different cases. The two different colors in all 
the panels represents the two types of forecasts WAMV and CNLT. Large dots indicate ensemble
mean performances while smaller dots indicate individual member performances. The maximum 
forecast skill is located at the top right corner and the minimum forecast skill is in the bottom left
of these diagrams. For a perfect score, success ratio = 1 and probability of detection = 1. The 
curved lines represent critical success index (CSI), and the diagonal lines represent bias. 
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1 
2 Figure 16. Same as Figure 15, but for 2-5 km Updraft Helicity (UH). 
3 
4 

57 


	Assimilation of GOES-16 Satellite derived Winds into the Warn-on-Forecast System
	Abstract
	1. Introduction
	2. Data and Methods
	3. Results
	4. Discussion and Conclusions
	Acknowledgments
	References:
	Tables
	Figures



